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The size-based separation of electrophoresing DNA chains of varying lengths has been experimentally
achieved in microfluidic obstacle arrays. The separation is actuated by the occurrence of size-dependent
chain-obstacle collisions and the subsequent formation of hooked chain configurations in the array. We inves-
tigate the role played by disorder in array geometry in determining chain dynamics in the array. As a proto-
typical example of a disordered post array, we select a self-assembled array of magnetic colloids, wherein the
degree of disorder may be varied by varying the magnetic field strength under which the array is generated. We
employ Brownian dynamics simulations of chain electrophoresis in the array to compute the mobility, disper-
sivity, chain-obstacle collision probability, and mean chain stretch in the device, and demonstrate the link
between the orientational order of the array and the resulting chain dynamics.
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The efficacy of microfluidic obstacle arrays in achieving
the size-based separation of DNA chains upon their motion
through the array has been established in experimental stud-
ies �1–4�. Obstacle-array based separation was pioneered by
Volkmuth and Austin �1�, who employed optical microlithog-
raphy to fabricate obstacle courses in silicon. Subsequently,
Doyle et al. �2� and Minc and co-workers �3,4� have em-
ployed arrays comprising self-assembled columns of super-
paramagnetic beads confined in a microfluidic channel,
formed upon the imposition of a magnetic field transverse to
the channel plane. These devices rely on the application of
an electric field to induce the motion of the negatively
charged DNA chains through the array. The subsequent oc-
currence of chain-obstacle collisions and the formation of
hooked chain configurations underpin the separation mecha-
nism. The size specificity of the technique arises from the
fact that a longer chain requires more time for its disengage-
ment from an obstacle than a shorter chain, consequently
taking relatively longer to traverse the array.

In a prior study on DNA electrophoretic separation in a
self-assembled array of magnetic beads, the presence of dis-
order in the obstacle arrangement was found to be essential
in effecting separation �5�. It was revealed from Brownian
dynamics simulations of �-DNA in a perfect hexagonal lat-
tice that the chain mobility lay close to the size-independent
free solution electrophoretic mobility �0, rapidly approach-
ing �0 as the electric field strength was increased. At the
same time, the dispersivity of the chain was found to be
close to its free solution value. These observations indicate
that a perfect lattice provides straight channels through
which a chain can pass without suffering collisions. Chan-
neling was also observed to occur in the study of Patel and
Shaqfeh on chain electrophoresis in perfect square and hex-
agonal lattices �6�. These observations signal the need for
long range disorder, which is provided by magnetic bead
assemblies despite the presence of locally ordered regions
therein.

Whereas Ref. �5� studied the effect of varying the electric

field strength and lattice spacing on chain dynamics in a
magnetic colloid assembly generated at a fixed magnetic
field strength, we here investigate the effect of varying the
magnetic field strength under which the array is generated
and, concomitantly, the degree of array disorder. The mag-
netic colloid arrays are generated by means of Brownian dy-
namics simulation of a collection of two-dimensional hard
spheres of diameter d=1 �m each, modeled as having repul-
sive point dipoles at their centers. The colloidal particles are
initially placed at the lattice sites of a perfect hexagonal lat-
tice, with the x axis chosen to lie along one of the lattice
vectors. A finite magnetic field strength is applied normal to
the plane of the colloidal spheres during simulation,
characterized by the parameter �=� /2�d /R�3, where
R=a sin�� /3�, a denotes the lattice spacing, and � is the
ratio of the interaction potential between two dipoles ori-
ented parallel to each other and separated by a distance d to
the thermal energy kBT �7,8�. The parameter � may hence be
interpreted equivalently as a dimensionless interaction en-
ergy or as a dimensionless inverse temperature. We generate
assemblies comprising 10 000 colloidal spheres at several
values of � and at lattice spacings of 3 and 6 �m. A periodic
unit cell of length 600.1 �m and width 129.9 �m is gener-
ated at a lattice spacing of 3 �m, while each dimension is
doubled at a lattice spacing of 6 �m. The simulations are run
until the defect concentration reaches steady state �8�, fol-
lowing which the unit cell thus formed is periodically re-
peated to generate a semi-infinite array occupying the region
x�0, with the positions of the magnetic colloids being held
fixed once the chain is introduced in the array. The reader is
referred to Refs. �7,8� for further details of the simulation
method adopted for magnetic colloid systems.

We perform Brownian dynamics simulations of the free
draining, bead-spring model of YOYO-1-stained �-DNA
having a contour length of 20.5 �m in the array. The Lange-
vin equation

dr j = ��0E +
1

�
�F j

s + F j
ev��dt +�2kBT

�
dW j �1�

is applied to each bead j=1, . . . ,N of the chain, where r j
denotes the position vector of bead j relative to the origin, �,*pdoyle@mit.edu
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the Stokes’ drag coefficient for each bead, and F j
s and F j

ev

denote, respectively, the spring force exerted on bead j by
the adjoining springs and the net excluded volume force ex-
erted on bead j by the remaining beads. The distortion of the
electric field E caused by the presence of the obstacles is
neglected. The electric field and the velocity of the nega-
tively charged DNA molecule are both measured in the posi-
tive x direction, whereby �0�0. The term W j represents a
three-dimensional Wiener process, with �dW j�t�	=0 and
�dW j�t�dWk�t��	=dt	 jk	�t− t���, where k=1, . . . ,N and � is
the identity tensor.

We adopt the discretization used by Kim and Doyle �9�
and select Nk,s=5.23 Kuhn lengths per spring, yielding a
chain of N=38 beads, with the Kuhn length bk=0.106 �m
being equivalent to two persistence lengths. We quantify the
electric field strength by means of the Peclet number, defined
as Pe=�0EN�A / �kBT� with A the persistence length of ds-
DNA, and perform simulations at Pe=5 and 10. We adopt
the modified Marko-Siggia law �10,11� to describe the spring
force-extension behavior, following Refs. �5,9�. Intrachain
exclusion is modeled by means of the soft, repulsive poten-
tial developed by Jendrejack et al. �12�, with the excluded
volume parameter appearing therein taking the value v
=0.0004 �m3 for �-DNA �5,9�. We adopt the semi-implicit
predictor-corrector scheme �13� for the integration of Eq. �1�,
with a time step of 10−3 at Pe=5 and 5
10−4 at Pe=10 in
units of �Q0

2 / �kBT�, with Q0 the maximum spring length.
Hard sphere exclusion between beads and obstacles is imple-
mented via the Heyes-Melrose algorithm �14�. At the start of
the simulation, the chain in an equilibrium coil configuration
is placed upstream of the array, and is simulated in the array
until the chain stretch equilibrates, fluctuating about a steady,
mean value. The chain is then simulated for a further time
duration before its configuration is sampled. Subsequently,
the mean velocity U and dispersivity D of the chain are
determined via the relations �xcm	=Ut and var�xcm�=2Dt,
where t is the time duration of the simulation following the
equilibration process, and xcm is the x coordinate of the chain
center of mass at time t. Averaging is performed over an
ensemble of 1000 chains, while the mean chain stretch is
determined by performing a time average after equilibration
in addition to an ensemble average. We define the collision
probability to be the number of chain-obstacle collisions per
lattice spacing crossed by the chain center of mass, where a
collision is said to have occurred when a portion of the chain
is present in all four quadrants of a coordinate plane whose
origin lies at the obstacle center �5�. Reference �5� contains
further details of our simulation method.

Our simulation results for the velocity and dispersivity of
the chain normalized with respect to their values in free so-
lution, namely, �0E and D0=kBT / �N��, are depicted in Fig.
1, while the mean collision probability � and the mean chain
stretch postequilibration are illustrated in Fig. 2. The occur-
rence of an abrupt change in all of the aforementioned chain
properties at a critical value of � is manifestly evident in
Figs. 1 and 2. In the arrays corresponding to low values of �,
the chain is seen to undergo a number of collisions, whereby
its mean velocity falls much below its value in free solution.
Concomitantly, the chain possesses a highly stretched con-

formation on average, indicating the frequent occurrence of
collisions. Similar behavior, although obscured by noise, is
also exhibited by the dispersivity. Interestingly, Figs. 1 and 2
reveal the existence of a minimum in mobility and concur-
rently, maxima in collision probability and stretch at �
14.
Beyond a critical value of �=14.89, a steep decrease in col-
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FIG. 1. �Color online� Mobility �a� and dispersivity �b� normal-
ized with respect to their values in free solution at several values of
� at a=3 �m, Pe=5 �squares�, a=6 �m, Pe=5 �circles�, and
a=3 �m, Pe=10 �diamonds�. The error bars represent 95% confi-
dence limits. The dashed lines are meant to guide the eye.
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FIG. 2. �Color online� Mean probability of chain-obstacle colli-
sion � �a� and time-averaged chain stretch after equilibration �b� at
several values of � at a=3 �m, Pe=5 �squares�, a=6 �m, Pe=5
�circles�, and a=3 �m, Pe=10 �diamonds�. The error bars represent
95% confidence limits. The dashed lines are meant to guide the eye.

ARUNA MOHAN AND PATRICK S. DOYLE PHYSICAL REVIEW E 76, 040903�R� �2007�

RAPID COMMUNICATIONS

040903-2



lision probability is observed, accompanied by an increase in
mobility and decrease in dispersivity. The concomitant de-
cline in mean chain stretch suggests that by and large, the
chain retains its coiled conformation. These observations are
indicative of the link between chain dynamics and the onset
of long range order in the array at increasing values of �,
whereby the chain is provided with channels through which
it may pass without being significantly impeded by the ob-
stacles.

The origin of the above behavior may be understood by
examining the structure of the arrays at various values of �.
Under the application of an infinite magnetic field strength
transverse to the channel plane �equivalently, at zero tem-
perature�, the colloid assembly exhibits a perfect hexagonal
lattice geometry. As the magnetic field strength is reduced,
thermal fluctuations in the positions of the colloids result in
deviations from a hexagonal pattern, culminating in a melt-
ing transition at a critical field strength. The phase transition
from the solid to the liquid phase in two dimensions has been
theoretically predicted to proceed via an intermediate hexatic
phase �15�, although evidence for the existence of a hexatic
phase remains inconclusive �16�. The three phases are distin-
guished on the basis of orientational symmetry. The solid
phase possesses long range orientational order, whereas ori-
entational correlations decay algebraically in the proposed
hexatic phase and exponentially in the liquid phase �15,16�.
Orientational order may be quantified by correlations in the
local order parameter �6�r�=exp�6i
�r��, where 
�r� is the
mean angle between the line joining nearest neighbors and
an arbitrary reference axis. The corresponding correlation
function is defined by the expression G6�r�= ��6

*�r��6�0�	. In
the solid phase, G6�r→��=const�0, signifying the pres-
ence of long range orientational order. The liquid phase ex-
hibits the decay G6�r��exp�−r /��T��, where the correlation
length is of the form ��T��a exp�b / �T /Tc−1�0.5� close to
the critical temperature Tc at which the liquid-hexatic transi-
tion occurs, with b a constant �15,16�.

The colloidal system employed in the present study has
been found to converge to the liquid phase for ��14.89 and
to the solid phase for ��15.2 �8�, an observation that we
reproduced in our studies. It is now clear that the steep de-
cline in chain-obstacle collision probability for values of �
exceeding 14.89 is directly linked to the onset of long range
orientational order in the array. The presence of orientational
order is also manifest in Fig. 3, which illustrates portions of
the arrays at various values of �, and in the behavior of G6�r�
illustrated in Fig. 4. Also depicted in Fig. 4 is the pair cor-
relation function g�r� �often referred to as the radial distribu-
tion function�, illustrating the increase in local order as �
increases.

To rationalize the initial increase in collision probability
for values of � ranging from 0 to 14, we postulate that the
presence of short range orientational correlations over the
length scale of the stretched DNA chain immediately follow-
ing its release from a collision provides the chain with a
short interstitial channel, thereby facilitating its rapid relax-
ation to a coil configuration and hence increasing the chain
cross-sectional area subsequently presented to obstacles.
Consequently, the chances of a subsequent chain-obstacle

hooking collision are improved. On the other hand, a chain
in a random array generated at �=0 �which possesses a cor-
relation length of 0� may encounter obstacles while still in a
stretched configuration immediately after its disengagement
from one collision. The glancing collisions occurring as a
result will likely not lead to long-lived hooking collisions,
and may also delay the relaxation of the chain to a coil
shape. Under the assumption that the chain relaxes instanta-
neously to a coil at the location of its leading end after un-
hooking, we postulate that the mean collision probability is
maximized when ��L, with L the chain extension immedi-
ately after unhooking from the obstacle. Upon coarse-
graining and fitting G6�r� to an exponentially decaying form
within a unit cell �although strictly valid only in an infinite
system� via a least squares minimization technique, we de-
termine that �=7.0±0.7 �m at �=12, and �=13±2 �m at
�=14, averaged over five realizations of the arrays with a
=3 �m, with the error estimates representing 95% confi-
dence bounds. The correlation length diverges at the phase
transition at �
14.89. The chain extension at Pe=5 and 10

FIG. 3. �Color online� Sections of arrays having a mean lattice
spacing of 3 �m generated by simulation at �a� �=0, �b� �=12, �c�
�=14.89, and �d� �=15.2.

3.0

2.5

2.0

1.5

1.0

0.5

0.0

g(
r)

403020100
r (µm)

Γ=0
Γ=12
Γ=14.89
Γ=15.2

0.6

0.5

0.4

0.3

0.2

0.1

0.0

G
6(

r)

403020100
r (µm)

Γ=0
Γ=12
Γ=14.89
Γ=15.2

(b)

(a)

FIG. 4. �Color online� Orientational correlation function G6�r�
�a� and pair correlation function g�r� �b� for arrays generated by
simulation at �=0 �dashed line�, 12 �solid line�, 14.89 �dashed-
dotted line�, and 15.2 �dashed-double-dotted line�.
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is determined from the large force limit of the Marko-Siggia
law �5� to be 11 and 14 �m, respectively, suggesting that a
maximum in the collision probability may occur close to �
=14. The correlation lengths are doubled at fixed � upon
doubling a. The maximum in collision probability, however,
still occurs close to �=14 at a=6 �m, as seen in Fig. 2. This
may be attributable to the fact that the relaxation of the
stretched chain subsequent to a collision does not occur in-
stantaneously at the location of the leading chain end, but
rather occurs further downstream after a finite time duration.
Further studies involving a wide range of chain sizes are
necessary to confirm the preceding hypotheses.

Figures 1 and 2 indicate the effect of varying Pe or a on
chain dynamics. An increase in Pe restricts the ability of the
chain to diffuse transverse to the electric field direction, with
a concomitant reduction in collision probability, particularly
in the arrays in the ordered solid phase. The dispersivity
increases noticeably with increase in Pe in arrays in the liq-
uid phase, which have a high incidence of collisions. With
increase in the mean lattice spacing, the difference between
chain behavior in arrays in the solid phase and in the liquid
phase is attenuated, the reason being that if the mean lattice
spacing greatly exceeds the chain diameter, the chain may

channel through the interstices, regardless of the array geom-
etry. Although the mean pore sizes of the arrays employed in
the present study exceed the chain diameter, separation be-
tween different species may be effected even in regular ar-
rays wherein the mean pore size falls below the diameter of
the larger chain �1�, owing to the dependence of chain dy-
namics on the chain size relative to the mean lattice spacing.
These issues are elaborated in Ref. �5�.

In sum, we demonstrate the link between DNA electro-
phoresis in an obstacle array and array order. While long
range orientational order leads to the channeling of the chain,
the presence of short range correlations on the scale of the
chain length may increase the probability of hooking colli-
sions and hence aid size separation in the array. These obser-
vations may be utilized in the design and fabrication of ob-
stacle courses and other disordered substrates for DNA
separation.
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